Принцип работы двигателя постоянного тока, характеристики электродвигателя, как устроен, основные отличия

Принцип работы двигателя постоянного тока

Большая часть современных электрических приводов работает использует переменный ток и работает в асинхронном режиме. Хотя, нельзя сказать, что моторы постоянного тока востребованы меньше. Чтобы понять, чем отличается один от другого электродвигатель, как устроен каждый из них, нужно вспомнить, что входит в понятие «ток».

{ ArticleToC: enabled=yes }

Отличие тока переменного от постоянного

Прежде всего, вспомним, что включает понятие «электрический ток» и какие его виды существуют. Это сделать легко, потому что все учились в школе и еще помнят о том, что преподавали на уроке физика. Понимают под ним направленное движение ионов или электронов, то есть, заряженных частиц.

Направление и величина тока за определенный промежуток времени определяют, будет ли ток считаться переменным или постоянным, что наглядно отражает график, приведенный ниже:

Принцип работы двигателя постоянного тока

Постоянным будет ток, который со временем не изменяет своего значения. Напряжение всегда стабильно. Это красная линия.

Зеленая линия, имеющая форму синусоиды, это ток переменный, который меняет как свое направление, так и величину. Периодичность прохождения одинаковых точек на горизонтальной оси ординат называют его частотой. Она для переменного тока считается стандартной и равняется 50 Гц.

В действительности, все инструменты и бытовые приборы (или, почти все) работают от постоянного тока, преобразованного из переменного (имеющегося в сети). Зачем же тогда нужен ток синусоидальный?

Вопрос вполне закономерный и объяснение ему следующее: подобная форма разрешает очень просто преобразовать поступающее от генератора электрической станции напряжение. Иными словами, от станции, напряжение которой 200000-300000 Вольт, до значения 220, привычного нам.

Принцип функционирования электрического двигателя

Принцип работы двигателя постоянного тока

Работа электрического двигателя постоянного тока базируется на взаимодействии двух магнитных полей, создаваемых ротором и статором. Вновь вспоминаем школьные уроки физики и рамку, которая вращается в магнитном однородном поле, Подавая на нее ток, индуцируем собственное поле магнитное круговое, которое взаимодействует с первым, создавая силу Ампера, которая направлена перпендикулярно и выталкивает из этого однородного поля нашу рамку.

В двигателе наблюдается тоже: статор играет роль неподвижного однородного магнитного поля, а в качестве рамки выступает вращающийся ротор двигателя, называемый также якорем.

Принцип работы двигателя постоянного тока

Это поле создается полюсами статора. На полюсах ротора имеются обмотки, состоящие из 2 частей и соединенные последовательно между собой. Их концы прикреплены к коллекторным пластинам, находящимся на валу двигателя электрического. Они, в свою очередь, контактируют с графитовыми щетками.

При условии, что расположены полюса, аналогично представленным на рисунке приведенном выше, полюс якоря будет северным. Также северным будет полюс статора, находящийся с ним в непосредственной близости.

Рекомендуем:

Поскольку, равнозарядные полюса отталкиваются под воздействием магнитных сил (с электродвигателем возможно это за счет вращения), северный якорный полюс развернется на 180 градусов и займет положение напротив статорного южного. По логике, оба они должны притягиваться, вызывая торможение.

Чтобы избежать этого и добиться вновь «отталкивания» полюсов, якорные обмотки в момент перехода через нейтральную линию переключают при помощи коллектора. Устройство двигателя постоянного тока, на основании этой информации, изображается следующим образом:

Принцип работы двигателя постоянного тока

Характеристики для двигателя электрического, работающего на постоянном токе

Электрический двигатель является оборудованием, управляют которым в зависимости от конкретных условий.

Для регулировки существует три метода:

  • изменение напряжения, подаваемого на обмотки;
  • введение в имеющуюся цепь сопротивления (дополнительного);
  • варьирование величиной потока, т.е. возбуждением.

Оценить работу электродвигателя помогают графики характеристик, подразделяемые на:

  • механические, демонстрирующие зависимость частоты или скорости вращения от имеющегося на валу мотора момента (с учетом поправочного коэффициента);
  • регулировочные, показывающие как частота вращения зависит от напряжения, подаваемого на якорные обмотки, потока и сопротивления.

В первом случае по оси ординат откладывают частоту вращения, а по оси абсцисс –момент.

Выглядит график как прямая, имеющая отрицательный уклон.

График строят для конкретного напряжения по базовому уравнению:

Принцип работы двигателя постоянного тока

Скорость, с которой вращается якорь, обозначается буквой ω . Напряжение в якорной цепи – U, коэффициент – K, поток – Ф, сопротивление обмотки якоря активное – RЯ, момент электромагнитный двигателя – M.

При построении графика регулировочной характеристики исходят из величины момента на валу (откладывают по оси х – абсцисс). Частота также откладывается по ординате.

Уравнения для каждой регулировки будет различным:

1. Регулировка напряжения:

Принцип работы двигателя постоянного тока

2. Регулирование реостатном, т.е. изменяя сопротивление:

Принцип работы двигателя постоянного тока

3. Потоковое изменение:

С графиками, отображающими сказанное, ознакомиться можно ниже:

Принцип работы двигателя постоянного тока

О механических характеристиках помнить нужно следующее – они бывают снятыми в реальном режиме, т.е. являющимися естественными, и искусственными, вычисляемые по изменению потока, сопротивления или напряжения.

Режимы работы двигателей

Оценить режимы, в которых работает оборудование, возможно при помощи графиков характеристик, которые необходимо расширить до 4 квадрантов, пронумеровав их. Нумерация начинается с верхнего квадранта правого и продолжается против стрелки часов.

Видео: Двигатель постоянного тока принцип работы (часть 1)

В квадранте первом координаты на обеих осях положительны (+). В нем и третьем можно заметить двигательный режим, определить мощность которого легко по формуле Р = М> 0. В оставшихся втором и третьем квадранте заметен тормозной или генераторный режим, при котором мощность отрицательна.

На графике различить легко точки, а также зоны, соответствующие определенным режимам:

  • В точке ωо образуется холостой ход. Момент в ней и ток равняются нулю, т.е. двигателем энергия не получается;
  • Подключение генератора параллельное. Реализуется, когда справедливы неравенства ω > ωо и E > U. При этом от рабочего оборудования передается на мотор энергия, в сеть же передается электрическая (генератор тока);
  • При коротком замыкании нулю равны E и, но механическая энергия не отдается вращающимся валом. В то же время, электрическая трансформируется в тепловую;
  • При соединении последовательном генератора (также режим называют торможением с противовключением) как ЭДС, так и ток направлены одинаково, ω < 0. Электричество вырабатывается благодаря совмещенному с ротором валу вращающегося оборудования;
  • Генератор автономный. Электричество вырабатывается без помощи сети, а только при помощи энергии вращающегося вала привода.

Параметры работы (технические и энергетические) двигателя постоянного тока дают возможность эффективного использования последних в различных сферах: от игрушек и легкой промышленности, до машиностроительной. Функционировать могут они в тормозном, т.е. режиме генератора, и двигательном, с учетом коэффициентов.

Видео: Двигатель постоянного тока принцип работы (часть 2)

Оцените статью:
Motocarrello
Подписаться
Уведомить о
0 комментариев
Популярные
Новые Старые
Межтекстовые Отзывы
Посмотреть все комментарии
0
Оставьте комментарий!x